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Figure 1: An object reconstructed using our interactive tool. From left to right: preserved topology based on user input, the
same model with projected textures, a reference image.
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ABSTRACT
We present a user-guided system for accessible 3D reconstruction
andmodeling of real-world objects usingmulti-view stereo. The sys-
tem is an interactive tool where the user models the object on top of
multiple selected photographs. Our tool helps the user place quads
correctly aligned to the photographs using a multi-view stereo
algorithm. This algorithm in combination with user-provided infor-
mation about topology, visibility, and how to separate foreground
from background, creates favorable conditions in successfully re-
constructing the object.

The user only needs to manually specify a coarse topology which,
followed by subdivision and a global optimization algorithm, cre-
ates an accurate model with the desired mesh density. This global
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optimization algorithm has a higher probability of converging to
an accurate result than a fully automatic system.

With our proposed tool, we lower the barrier of entry for cre-
ating high-quality 3D reconstructions of real-world objects with a
desirable topology. Our interactive tool separates the most tedious
and difficult parts of modeling to the computer, while giving the
user control over the most common robustness issues in automatic
3D reconstruction.

The provided workflow can be a preferable alternative to using
automatic scanning techniques followed by re-topologization.

1 INTRODUCTION
There is a high demand for photo-realistic assets for use in computer
games, movies, and industrial and architectural applications. Often,
a large number of assets are used in the pursuit of detailed and
highly realistic environments. These realistic assets can be modeled
by hand. However, efforts have increasingly been made to use 3D-
scanning to automatically produce content from real-world objects.

Automatic scanning of static objects is viable under certain cir-
cumstances. However, the process is far from trivial. Fully automatic
solutions that only take images as input, are usually dependent on
favorable lighting conditions and high-quality photographs to be
successful. Other systems use elaborate setups of cameras in a stu-
dio setting and typically require expensive equipment to allow for
high-quality reconstructions.

Even with a high-quality reconstruction algorithm, the resulting
geometry will be of very high density, and with arbitrary topology.
While tools exist that allow for semi-automatic simplification of
these results, achieving a topology that is sufficiently good for, e.g.,
animation will still require significant user input. The main contri-
bution in this paper is a novel system that allows the user to specify
topology prior to reconstruction, which allows the reconstruction
algorithm to utilize the user’s knowledge of visibility and surface
curvature to achieve better results.

https://doi.org/10.1145/3384382.3384530
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With our method, the user draws a coarse mesh on top of a
photograph, ensuring the desired topology and resolving visibility,
while the tool automatically aligns the geometry with the input
photographs.

The user can easily infer where a quad can reasonably approx-
imate a surface and align it with discontinuities, which in turn
simplifies the automatic optimization since it can rely on the as-
sumption of a locally flat surface patch. The user can also easily
distinguish foreground from background. Since the matching win-
dows of our reconstruction algorithm correspond to the quads of
the coarse geometry, it is much easier to capture regions with little
or no texture. Additionally, the user can easily work around, or
avoid, regions of high specularity that would only introduce noise
in an automatic algorithm.

The system is designed to be easy to use for novice users. How-
ever, some prior knowledge about quad modeling and how to con-
struct a favorable topology is recommended for optimal results.

In the next section, we will give an overview of related work.
Then, in Section 3, we will describe our novel modeling system
which allows a user to easily draw a coarse mesh on top of pho-
tographs. In Section 4 we will describe an optimization algorithm
that interactively aligns this mesh to the input photographs. Finally,
in Section 5 we evaluate the quality of our method by comparing the
results achieved by a novice modeler using our tool to the results
obtained by an automatic reconstruction software.

2 PREVIOUS WORK
2.1 Automatic algorithms
Multi-view reconstruction is awell-studied problem. For an overview,
see Hartley and Zisserman [Hartley and Zisserman 2004] and Seitz
et al. [Seitz et al. 2006].

In one type of systems, the input to the system is a collection of
photographs, generally taken by the same camera, with the cam-
era locations and orientations computed by Structure from Motion
(SfM) [Snavely et al. 2006]. This calibration often works provided
that there is enough overlap between images, since the algorithm
uses image-space features to find matching points between them.
With this camera calibration and sparse reconstruction from the
SfM algorithm, a dense reconstruction can be performed to create
3D models, e.g. using Patch Match Stereo [Bleyer et al. 2011][Schön-
berger and Frahm 2016].

Such automatic scanning procedures are compelling due to their
simplicity, since only a set of photographs have to be provided.
However, to achieve high quality, they are dependent of the quality
of the input photographs, especially concerning the lighting condi-
tions under which they are captured. This can be challenging due
to the necessary experience in photography and 3D reconstruction
techniques.

Due to their ease of use, there are several open-source, as well
as commercial, programs that perform this kind of reconstruction.
Examples of open-source software are Meshroom, COLMAP and
Bundler. Commercial variants include RealityCapture and Photo-
scan [Bianco et al. 2018].

Another common variant of systems uses a multi-camera setup
capturing a fixed-size volume. This setup could capture the volume
from all sides, typically in a dome, or could have a more limited

set of views from a circle or just one side of the object [Seitz et al.
2006][Beeler et al. 2010][Collet et al. 2015]. Such setups are typically
calibrated with some form of calibration target to allow for higher
accuracy and wider angle between cameras [Zhang 2000].

Multi-camera setups are typically not accessible to the average
user due to the special equipment and resources (cameras, means
of synchronization, calibration, green screen, studio, special light
sources, and reflectors) required. Professional studios that provide
these facilities are starting to become an alternative, although they
are still in limited numbers and availability.

Fixed setups like these also have the downside of not being able
to capture immobile objects, such as statues, houses or other objects
outdoors.

2.2 Interactive algorithms
One popular approach is to use Kinect Fusion, where a depth cam-
era is used as a handheld camera for interactively scanning ge-
ometry [Izadi et al. 2011][Newcombe et al. 2011]. This method
is compelling due to its ease of use but has a tendency to create
too smooth meshes by the use of averaging and cannot handle
non-watertight topologies. Kinect Fusion uses a volumetric signed
distance field as its internal data representation, which must be
converted into triangles with e.g. marching cubes, with no guaran-
tees given on a reasonable topology. The scanning might also be
affected by inherent limitations of the depth cameras, such as not
being able to scan outdoors, or multi-path interference in the case
of time-of-flight cameras.

In certain cases, a predefined template mesh can be used, and
automatically fitted to the input images. This has been successfully
achieved in real time by, for instance, Zollhöfer et al. [2014]. Unlike
our method, the final mesh is obtained through optimizing the mesh
vertices against previously obtained depth maps.

Another method is to use user-provided annotations directly
in a global multi-view stereo algorithm. These annotations are
added directly to the variational energy functions as constraints
on smoothness, discontinuity and ordering. This method does not
consider object topology. However, it achieves good results for the
reconstructed depth map [Doron et al. 2015].

There are also several methods that use SfM in an interactive
approach. One successful application of interactive modeling with
SfM is for architectural modeling. Architectural motifs often have
a geometry which lends itself to piecewise planar approximations
that can be aligned with the sparse geometry from SfM and can
also make use of constraints from inferred vanishing points [Sinha
et al. 2008].

In VideoTrace [van den Hengel et al. 2007], the sparse geometry
acquired from SfM is used to interactively model objects in videos.
First, a preprocessing step uses an SfM algorithm to create a sparse
geometric representation of the filmed sequence. Polygons are then
traced out manually in one or several frames and are aligned to
the sparse geometry by use of plane fitting. Given a prospective
model made up of such polygon faces, further model validation is
made with 2D information, comprised of the difference of color
histograms for each face [van den Hengel et al. 2007].

SfM has also been used successfully for modeling in combination
with a sketch based modeling technique called 3-sweep modeling,
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where two strokes represent the profile and one stroke is used to
extrude the profile [Chen et al. 2013]. The sparse geometry acquired
from SfM is used to compute depth values for stroke endpoints,
which creates accurate 3D models in accordance with the input
images [Xu et al. 2016].

Another sketch-based approach is due toHabbecke andKobbelt [Habbecke
and Kobbelt 2009], who use an interactive method to piecewise
build up a model using dense multi-view stereo. Similarly to our
approach, they use a variational framework to find an optimal mesh
given a set of input images. However, they use the user input only
for visibility and foreground segmentation, whereas our algorithm
also takes topology and mesh density into consideration. Their
method is more focused on interface simplicity compared to our
method, which concentrates on obtaining accurate geometry and
topology [Habbecke and Kobbelt 2009]. To the best of our knowl-
edge, no previous method exists in which the multi-view stereo
algorithm itself is guided and refined by a user-provided topology.

3 INTERACTIVE MODELING SYSTEM
In this section, we present the user interface and overview the
design of our application. We will also elaborate on some of the
non-obvious choices we have made building this system.

3.1 Preprocessing
The only preprocessing step necessary is to calibrate the set of im-
ages to obtain intrinsic and extrinsic camera parameters, for which
we use an off-the-shelf SfM package called COLMAP [Schönberger
and Frahm 2016]. The scale of the scene given by the calibration
can be adjusted manually if needed.

3.2 View Selection Interface
The proof-of-concept system is implemented as an interactive tool
for 3D reconstruction. The input to the system is a set of cali-
brated images of the object that is to be reconstructed. The user
photographs the subject from the view directions that are most
relevant to cover. Additional images can be added as needed. The
input images are shown as a list at the top of the screen.

To start the reconstruction, the user chooses a set of images
(two or more) that have a clear view of the part of the object of
interest (see Figure 2). One of the selected images is chosen to
be the reference image. Modeling will take place in this reference
image, and later optimization will not alter the topology that the
user specifies in this view. The selected images are saved in a view
selection list, allowing the user to later go back and forth between
different sets of views.

3.3 Modeling Interface
The user constructs the geometry by creating quads on top of the
reference image with the intention of creating a suitable topology.
Every time a quad has been created, an underlying multi-view
stereo algorithm automatically finds an approximate depth for each
of its vertices in the reference image, thus not moving the quad
from the position in the image plane where the user constructed it.
When the user is satisfied with this particular area of the object, the
next place of interest can be chosen, and along with it a new set of
views (see Figure 2). For each quad, the corresponding views that

Figure 2: In the left-most image, the user starts modeling
by placing a quad just at the front of the model, which is
automatically aligned given two views. In the middle image,
more quads have been placed in the same views. In the right-
most image, other viewswith better visibility have been cho-
sen, signified by a unique color.

were used to create it are stored, along with the chosen reference
view.

To help with editing, we employ a number of different visualiza-
tion modes for quads. The default mode shows which quads belong
to which views, by using a unique color. Secondly, there is a mode
that visualizes the optimization score provided the quad’s current
vertex positions. Finally there is a mode that, for each view not
being a reference view, projects the quad and samples from the
reference image. This is useful for evaluation, since it makes it easy
to spot poorly aligned quads, or quads with incorrect visibility.

3.4 Subdivision And Optimization
When the first coarse topology of the object is finished, the user
can choose to subdivide the whole or parts of the mesh where it is
deemed necessary and also manually adjust vertices or reapplying
optimization to specific quads if required (see Figure 3). If satisfied
with the topology, a global optimization can be applied, optimizing
the positions of all vertices at once, using a joint photogrammatical
and smoothness energy function (see Section 4). In this algorithm,
each quad uses its remembered views from construction to ensure
correct visibility. Prior to this, the user can also mark quads belong-
ing to particularly troublesome parts of the geometry that are to
be excluded from the photometric term of the optimization.

Figure 3: Left: the user has finished a coarse topology. Mid-
dle left: after subdivision. Middle right: after global opti-
mization the geometry can be seen to follow the silhouettes
closely. Right: a rendered view of the optimized model.
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4 MULTI-VIEW RECONSTRUCTION
This section will cover the underlying reconstruction engine of our
application, which uses a multi-view stereo algorithm to align the
geometry to the set of input photographs.

We use two optimization algorithms in our application: one
exhaustive search for coarse grained alignment of quads while
modeling, and one global mesh optimization that optimizes all
vertices of the mesh at once. Both algorithms use quads as the base
primitive, to retain the information provided by the user.

4.1 Photo-consistency score
Most previous work on multi-view stereo attempts to match each
pixel in one image pairwise to pixels in other images. To be able to
classify two pixels as describing the same point in space, a small
matching window around the pixel is used. Our method works
similarly but, instead of a pixel, a whole quad of the mesh is to
be matched between images, and thus the matching window is
the projection of the quad on each camera’s image plane. If the
vertices of the quad are in the correct position, the quads can be
sampled uniformly in 3D, and projected samples will be similar in
the images.

To compare projected samples, a suitable photometric consis-
tency score is needed. Common such scores include sum of ab-
solute differences (SAD), sum of squared differences (SSD), and
normalized cross-correlation (NCC). Often, these cost functions are
augmented by subtracting the mean value over the filter that is
used, which increases the robustness with respect to local lighting
variations [Szeliski 2010].

To be able to have a consistent photometric score regardless
of the number of views that are currently in use, we propose a
measure that is an extension to the common mean-subtracted SAD
score, which we select because of its simplicity and robustness.

The mean-subtracted SAD is defined as

𝐷𝑆𝐴𝐷 =
1
𝑛

𝑛∑
𝑖

| (𝑝𝑖 − 𝜇𝑝 ) − (𝑞𝑖 − 𝜇𝑞) |, (1)

where 𝑛 is the number of samples, 𝑝 is each sample from the
first image with corresponding mean value 𝜇𝑝 , and 𝑞 is each sample
from the second image with corresponding mean value 𝜇𝑞 . Our
proposed measure is analogous to the variance but instead uses the
L1-norm such that

𝑃 =
1
𝑛

1
𝑚

𝑛∑
𝑖

𝑚∑
𝑗

| (𝑝𝑖, 𝑗 − 𝜇 𝑗 ) − 𝜇𝑖 |, (2)

where𝑚 is the number of views used, 𝑝𝑖, 𝑗 is the 𝑖:th sample at
view, 𝑗 , and

𝜇𝑖 =
1
𝑚

𝑚∑
𝑗

𝑝𝑖, 𝑗 . (3)

𝜇 𝑗 is the same mean value as in Equation 1.
This measure also collapses to the regular mean-subtracted SAD

when𝑚 = 2.

4.2 Exhaustive Search
The exhaustive search algorithm starts automatically whenever the
user has specified the four vertices of a quad, trying to orient the
quad in world space given the current views. This is achieved by
generating a number of prospective quad positions by taking 𝑁

steps in the view-ray direction of the reference view for each free
vertex (i.e., each vertex not connected to any other quad), from −𝑑
to +𝑑 around the current position. Hence, 𝑁𝑉 number of quads will
be evaluated, where 𝑉 is the number of free vertices.

This exhaustive approach independently aligns each quad with
respect to the input images. The quads can, in this stage, lie quite
far from the actual geometry and thus far from a minimum in our
photometric cost function (Equation 2). This method robustly finds
approximately correct configurations that can be used for further
refinement at a later stage (see Section 4.4).

For the exhaustive search, two constraints are added that enforce
the assumption that the user has chosen views with full visibility
of the current quad.

The first constraint ensures that the quad is not back facing in
any of the views in the current view set. This can easily be tested
by evaluating the winding order of the projected vertices in each
view compared to the reference view. The other constraint is to
ensure that the current quad is not occluded by any other geometry
in the mesh from the current views. To evaluate this, depth maps
of the mesh are rendered from each view in the view set. A depth
test is then made for each of the quad’s vertices to see that they do
not lie behind any current geometry.

4.3 Energy Function
The goal of our application is to align the geometry in accordance
to the input photographs while preserving the topology that the
user has specified. To achieve this using a variational approach, a
suitable energy function must be specified.

The basic energy that we want to minimize is a function over the
mesh given the photometric consistency score in Equation 2. Since
this is computed per quad the energy functions simply becomes

𝐸1 =
∑
𝑞∈𝑀

𝑃𝑞 (4)

for every quad, 𝑞, in model𝑀 , where 𝑃𝑞 is evaluated with respect
to the images contained in the view set for each quad 𝑞.

To Equation 4, we also add a smoothness term to counteract
inevitable image noise and imperfect calibration. This also leads
to a wanted coupling between vertices and generally improves the
rate of convergence. It is also important for areas with little or no
texture information.

For this smoothness term, we look at the normals for the 1-
ring neighbors of triangles around a given vertex. For each quad
connected to the vertex, a face point, 𝑓 , is computed, which is the
average of the quad’s vertices. Two triangles are then formed for
each quadwhich both have 𝑓 and the current vertex as their first two
vertices, and the third one being the two connected vertices in that
quad respectively. For each such triangle, two per connected quad,
a normal 𝑛𝑖 is computed. Firstly, an average 𝑛𝑣 of these normals is
computed as the normal of the current vertex. Then, the dot product



User-guided 3D reconstruction using multi-view stereo I3D ’20, May 5–7, 2020, San Francisco, CA, USA

between all 𝑛𝑖 :s and 𝑛𝑣 are accumulated to produce a smoothness
score. Expressed as an energy function, this becomes

𝐸2 =
∑
𝑣∈𝑀

(1.0 − 1
𝑁

𝑁∑
𝑖

n𝑣 · n𝑖 ) (5)

where 𝑁 is two times the number of connected quads for vertex
𝑣 .

Finally, we add a term that enforces the quads to be as flat as
possible. This works in a similar way as the smoothness term by
making use of the normals 𝑛𝑖 corresponding to the four triangles
produced by the two possible triangulations of a quad. These nor-
mals are averaged into 𝑛𝑞 , and then the dot product is used to
compute the average deviation from this:

𝐸3 =
∑
𝑞∈𝑀

𝐹𝑞 =
∑
𝑞∈𝑀

(1.0 − 1
4

4∑
𝑖

n𝑞 · n𝑖 ) (6)

for every quad, 𝑞, in model𝑀 .
The final energy function is the sumof these three terms, weighted

with three scalars 𝑎, 𝑏, 𝑐 such that

𝐸𝑓 =𝑎𝐸1+
𝑏𝐸2+
𝑐𝐸3

(7)

with 𝑎 + 𝑏 + 𝑐 = 1. Typical values for these weights are 𝑎 =

0.98, 𝑏 = 0.01, 𝑐 = 0.01.

4.4 Global optimization
When the user has built (a part of) a coarse model, a more fine-
grained type of optimization can be applied. The information built
up during construction provides favorable conditions compared
to when the input data comes from a scanning procedure. These
conditions include:

• correct visibility,
• quads align with approximately flat areas,
• quads are oriented correctly in world space,
• quads are aligned to discontinuities,
• and correct foreground/background segmentation has been
performed.

The final Equation 7 is a function of the mesh vertices. Vertices
can only be moved along a ray: for most vertices, this ray is the
same as the view direction of the owning quads reference view. For
vertices connected to quads with different view sets, however, the
average of the corresponding view directions is used.

Equation 7 is thus a function of a set of ray parameters t. This
equation needs to be minimized globally for the whole model with
respect to these parameters. For this, we need to compute the gra-
dient

∇𝐸𝑓 (t) =𝑎∇𝐸1 (t)+
𝑏∇𝐸2 (t)+
𝑐∇𝐸3 (t).

(8)

Since the photometric term and the flatness term are computed
per quad, we need to compute the partial derivatives per quad.
These partial derivatives can be expressed as

𝜕𝐸1
𝜕𝑡𝑖

=
∑
𝑞∈𝑀

𝜕𝑃𝑞

𝜕𝑡𝑖
=

∑
𝑞∈𝑄𝑖

𝜕𝑃𝑞

𝜕𝑡𝑖
(9)

where 𝑄𝑖 is the quads connected to the vertex corresponding to
the ray parameter 𝑡𝑖 . This is done in a similar way for Equation 6
so that

𝜕𝐸3
𝜕𝑡𝑖

=
∑
𝑞∈𝑀

𝜕𝐹𝑞

𝜕𝑡𝑖
=

∑
𝑞∈𝑄𝑖

𝜕𝐹𝑞

𝜕𝑡𝑖
. (10)

Given the partial derivatives 𝜕𝐸1
𝜕𝑡𝑖

and 𝜕𝐸3
𝜕𝑡𝑖

along with 𝜕𝐸2
𝜕𝑡𝑖

, which
is computed per vertex, all terms for equation 8 have been assem-
bled.

Described in words, our global optimization algorithm works
like this: optimize the position of all vertices in the mesh, with
the constraint that each vertex lies somewhere along the view-ray
of its reference view (or the average of view-rays if the vertex is
shared). The positions are optimized so that the score for each
quad is minimized, where the score is a sum of a photometric,
smoothness, and flatness score.

Equation 7 is an error function that can be minimized efficiently
using e.g. the Gauss-Newton or Levenberg–Marquardt method. We
have opted for a simpler approach using Gradient Descent, which
empirically has shown to converge fast enough for our purposes.
The partial derivatives are computed using central differences [No-
cedal and Wright 2006].

4.5 Implementation
When modeling, it is important that the underlying optimization is
unobstructive to the workflow, i.e, that it is fast enough to not stall
the user. The, by far, most expensive part of both the exhaustive
search and the global optimization is estimating the photometric
consistency score for a quad (Equation 2).

This is therefore implemented on the GPU using CUDA, and sev-
eral such comparisons can be performed efficiently and in parallel
by launching kernels with a list of quads as input.

The work is divided into three different kernels, where each
kernel processes one quad per thread. The problem is embarrass-
ingly parallel with respect to each quad, and as long as a sufficient
amount of quads are processed simultaneously the utilization of
the GPU is high. Only for a small amount of quads other strategies
such as parallelizing over each quad sample could be considered.

The first kernel samples the quad uniformly in 3D space, and
then project these positions to and sample from the relevant images.
These image samples are then used as input to a second kernel that
computes the mean value (corresponding to 𝜇 𝑗 in Equation 2) over
the projected quad. The last kernel computes the actual score of
Equation 2 by using the sampled values and the computed mean
values. The output of this last kernel is a list of scores per quad.

For the exhaustive search, Section 4.2, we send the list of quads
corresponding to all prospective configurations to the GPU. The
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resulting list of scores is traversed and the lowest score corresponds
to the best quad configuration.

The global optimization uses the same kernels but instead sends
the quad configurations corresponding to the central difference of
vertex positions for evaluation (see Section 4.4).

We use Catmull-Clark subdivision to create a higher resolution
mesh [Catmull and Clark 1978]. Since we use quads, lines are pre-
served, and we are guaranteed not to get any singularities.

5 RESULTS
We have evaluated our tool for four different scenes (see Figure 5).
The results from the reconstructions will primarily be compared to
the output of the automatic reconstruction software Meshroom [Al-
iceVision 2018]. Meshroom is a free, open-source framework for
3D reconstruction based on photogrammetry. It uses a standard
pipeline based on feature matching and SfM in combination with
dense stereo reconstruction.

In Figure 5, the resulting topology is compared between our
method at different levels of subdivison and an automatic recon-
struction with Meshroom. In the left-most image in these figures,
the coarse topology modeled by the user is shown. The next two
images, from left to right, show the evolving mesh when applying
subdivison and global optimization, which are automatic proce-
dures. The right-most images show the automatic reconstruction
produced by MeshLab. These models are highly tessellated (the
inset shows individual triangles when zooming in). This triangu-
lation is somewhat arbitrary and does not follow any particular
topology. In most cases, using these meshes would require a manual
re-topologizing pass, an amount of work similar in magnitude to
what our approach requires. However, due to noise in the scanned
result, the re-topologization would cause much of the detailed ge-
ometry to be lost. In contrast, we decide upon the topology first
and then optimize with respect to that, which does not lead to the
same information loss.

In Figure 6, the quality between the reconstructed models are
compared. From left to right they show the scanned model with
original tessellation, our model after two subdivisions, and an auto-
matically re-sampled version of the scanned model.

The original scanned model has a high mesh density, and while
it captures much of the detail in, e.g., Figure 6d, it also exhibits a lot
of noise. When re-sampled, Figure 6f, most of the noise is removed.
However, important details such as creases and folds are lost. Due
to, in our method, leveraging the provided information from the
user regarding visibility, silhouettes, and topology, the problem of
noise is mitigated while keeping the detail level high. In several
cases, as in Figure 6h and Figure 6k, our examples show more detail
than the scanned counterparts.

At the silhouette of the ear in Figure 6k we can see how sharp
features are handled using our method. While, for our method,
manual work is required to align the coarse topology along the
edge of the ear, it is difficult for a fully automatic scanning procedure
to capture such features accurately (see Figure 6j).

In Figure 6g, a clear example can be seen where the automatic
scanning fails. In the middle of the plastic tunnel and to the sides
there are uniform green areas that cannot be handled by a typical
photogrammetry pipeline (see Figure 4 for a clearer view of of these

areas). In our reconstruction, Figure 6h, large quads (see Figure 5i)
are placed in this region that allows them to cover at least some
texture and anchor them into place. For a higher level of subdivison
(Figure 5k), quads are small enough to only cover uniformly colored
regions also in our case. However, our global regularization term
keeps noise and distortion from being introduced to the geometry.

Figure 4: One of the photographs of the tunnel scene. The
uniform green areas are hard to reconstruct for an auto-
matic scanning procedure since they locally lack texture in-
formation. Due to placing large quads with correct visibility
andwith partial coverage of textured areas this is not a prob-
lem for our method.

6 LIMITATIONS
The example application in this paper is a proof-of-concept and
as such lacks the ease-of-use and robustness expected from pro-
fessional modeling applications. It has mainly been developed as a
way to demonstrate the possibilities of using an underlying opti-
mization engine while modeling real-world objects, while retaining
all the benefits of having an accurate topology, and it more closely
resembles modern modeling practices than previous methods.

Since our optimization routine is based on multi-view stereo,
and even though we try to mitigate its inherent problems by using
as much user input as possible, we still inherit the native problems
of this technique. For example, large untextured regions will be
problematic, and surfaces with highlights and other non-lambertian
effects will be hard to reconstruct accurately.

Objects with much self-occlusion will also be challenging due
to the number of vantage points required to fully cover its surface.
This is, however, not unique to our method, and since our method is
incremental, we can add new images to an ongoing reconstruction
if needed without having to start over from scratch.

In general our method has an advantage over automatic scan-
ning methods when it comes to handling problematic areas, since
the user, at all stages of the reconstruction, has the possibility to
manually adjust the geometry and lock such parts of the geometry
when considered correct.

7 CONCLUSIONS AND FUTUREWORK
We present a proof-of-concept application for user-assisted 3D
reconstruction using multi-view stereo. Our novel approach takes
topology into account and incorporates information that the user
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Figure 5: The difference in topology when using our tool (left three, from coarse to fine subdivison levels) and when using
Meshroom (right-most images). Notice the high frequency, arbitrary topology shown in the insets of these images.

provides, to get accurate visibility and geometrical constraints. This
enables our final global multi-view stereo optimization to work

under more ideal conditions not easily achieved through a more
automatic procedure.
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Figure 6: Comparison of quality between our reconstruction and the reconstruction byMeshroom. The left-most images show
the original Meshroom reconstruction. The middle images show our reconstruction after two subdivisions. The right-most
images show the reconstruction from Meshroom after resampling.
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